www.rsc.org/chemcomm

ChemComm

[TeSe₃]^{2–} and [TeSe₂]^{2–} as synthons

Sergey M. Dibrov and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. E-mail: ibers@chem.northwestern.edu; Tel: 847 491 5449

Received (in West Lafayette, IN, USA) 6th June 2003, Accepted 27th June 2003 First published as an Advance Article on the web 18th July 2003

The $[Au_2(TeSe_2)_2]^{2-}$ anion has been prepared from the reaction of $[TeSe_3]^{2-}$ with AuCN in DMF in the presence of PEt₃ and from the reaction of $[TeSe_2]^{2-}$ with AuCN in DMF. Reaction of $[TeSe_2]^{2-}$ with AuCN in DMF in the presence of PEt₃ leads ultimately to the $[Au_2(Te_2)_2]^{2-}$ anion.

The known $[\text{Te}_m\text{Se}_p]^{n-}$ anions include $[\text{TeSe}_2]^{2-,1}$ $[\text{TeSe}_3]^{2-,1,2}$ $[\text{Te}(\text{Se}_5)_2]^{2-,3}$ $[\text{Te}(\text{Se}_5)_3]^{4-,4}$ $[\{\text{Te}(\text{Se}_2)_2\}_2(\mu_2-(\text{Se}_2)]^{2-,4,5}$ and $[\text{Te}_3\text{Se}_6]^{2-,5}$ All but the last anion contain Te^{II} or Te^{IV} centers bonded to Se_n^{2-} species (n = 1, 2, or 5). $[\text{Te}_3\text{Se}_6]^{2-}$ consists of a one-dimensional infinite $\frac{1}{\infty}[\text{Te}(\mu_2-(\text{Se}_3)(\mu_2-(\text{SeTeSe})\text{Te}(\mu_2-\text{Se})^{2-}]$ chain separated by cations. Although the $[Q_m]^{2-}$ (Q = S or Se or Te) polychalcogenide anions have been employed in the development of an extensive polychalcogenometalate solution chemistry,⁶⁻¹⁰ we can find only one report of a reaction with a metal system of a mixed Te/S or Te/Se polychalcogenide anion. Here we report the reactions of $[\text{TeSe}_3]^{2-}$ and $[\text{TeSe}_2]^{2-}$ with Au⁺ in DMF to afford the $[\text{Au}_2(\text{TeSe}_2)_2]^{2-}$ anion as well as the $[\text{Au}_2(\text{Te}_2)-(\text{Te}_{2.39}\text{Se}_{0.61})]^{2-}$ and $[\text{Au}_2(\text{Te}_2)_2]^{2-}$ anions.

 $[PPh_4]_2[Au_2(TeSe_2)_2]$ has been prepared by the reaction of AuCN with Na₂[TeSe₃] in DMF in the presence of excess PEt₃ and PPh₄Br at 20 °C.¹¹ The same compound can also be synthesized with KAu(CN)₂ in place of AuCN. However, when PEt₃ is omitted from either reaction no product is obtained. It is well known that PEt₃ is capable of extracting Se from polyselenides¹² and that is the case here as evidenced by a signal at $\delta = 47.2$ ppm in the ³¹P NMR spectrum of the original reaction solution; this corresponds to a value of $\delta = 45$ obtained earlier for SePEt₃.¹³ Presumably the other product is [TeSe₂]²⁻. The necessity of including PEt₃ in these reactions is to be contrasted with the direct reaction of $[Me_4N]_2[TeS_3]$ with AuCN to afford the $[Au_2(TeS_3)_2]^{2-}$ anion, in which the TeS₃ unit remains intact.¹⁴

The crystal structure of $[PPh_4]_2[Au_2(TeSe_2)_2]$ comprises four $[PPh_4]^+$ cations and two $[Au_2(TeSe_2)_2]^{2-}$ anions well-separated in the unit cell.¹⁵ The structure of the $[Au_2(TeSe_2)_2]^{2-}$ anion, which has crystallographically imposed $\overline{1}$ symmetry, together with selected bond distances and angles is shown in Fig. 1. The two TeSe₂ groups act as bidentate ligands to the two Au centers, resulting in essentially linear Se–Au–Se linkages and an eightmembered ring with a chair conformation. The Au···Au distance of 3.917 Å is too long for bonding.^{16,17} The $[Au_2(TeSe_2)_2]^{2-}$ anion is conveniently described in a formal sense as $[(Au^+)_2(TeSe_2^{-2-})_2]^{2-}$. The structure of $[Au_2(TeSe_2)_2]^{2-}$ resembles that of $[Au_2(TeS_3)_2]^{2-}$ reported earlier, although in that compound the Te center is bonded to three chalcogens.¹⁴

The likelihood that the polychalcogenide reactant that led to the formation of the $[Au_2(TeSe_2)_2]^{2-}$ anion was not $[TeSe_3]^{2-}$ but rather was $[TeSe_2]^{2-}$ prompted us to carry out the reactions described above in the absence of PEt₃ but with Na₂[TeSe₂] in place of Na₂[TeSe₃]. As anticipated, the only product obtained was $[PPh_4]_2[Au_2(TeSe_2)_2]$. However, if PEt₃ was added to the reaction of Na₂[TeSe₂] with KAu(CN)₂ in DMF the compound $[PPh_4]_2[Au_2(Te_2)(Te_{2.39}Se_{0.61})]^{18}$ (Fig. 2) was obtained. This compound is analogous to $[PPh_4]_2[Au_2(Se_2)(Se_3)].^{19}$ In this

Fig. 1 Drawing of the $[Au_2(TeSe_2)_2]^{2-}$ anion. Selected bond distances (Å) and angles (°): Au(1)–Se(1), 2.402(1); Au(1)–Se(2), 2.407(1); Te(1)–Se(1), 2.493(1); Te(1)–Se(2), 2.487(1); Se(1)–Au(1)–Se(2), 177.41(3); Au(1)–Se(1)–Te(1), 99.64(3); Au(1)–Se(2)–Te(1), 96.66(3); Se(1)–Te(1)–Se(2), 104.71(3). Here and in Fig. 2 displacement ellipsoids are displayed at the 50% probability level.

Fig. 2 Drawing of the $[Au_2(Te_2)(Te_{2.39}Se_{0.61})]^{2-}$ anion. Selected bond distances (Å): Au(1)–Au(2), 3.146(1); Au(1)–Te(1), 2.550(1); Au(1)–Te(3), 2.549(1); Au(2)–Te(4), 2.539(2); Au(2)–Te(2), 2.562(1); Te(1)–Te(2), 2.765(1); Te(3)–Se(5)/Te(5), 2.597(2)); Te(4)–Se(5)/Te(5), 2.554(2). The latter two distances are non-representative owing to the 0.39/0.61 Te/Se disorder at position 5.

reaction, as opposed to the one that occurs in the absence of PEt₃, the [TeSe₂]^{2–} anion has not remained intact but rather from its disintegration the η^2 -attachment to the Au centers of both Te₃ and TeSeTe groups has resulted. The resultant anions are not very stable in the reaction solution and transform to the more stable compound [PPh₄]₂[Au₂(Te₂)₂],^{19,20} presumably through the extraction of the apical Q atom with PEt₃ with concomitant formation of a Te–Te single bond.

Notes and references

1 M. Björgvinsson, J. F. Sawyer and G. J. Schrobilgen, *Inorg. Chem.*, 1991, **30**, 4238–4245.

- 2 R. Zagler and B. Eisenmann, Z. Kristallogr., 1988, 183, 193-200.
- 3 R. Zagler and B. Eisenmann, Z. Naturforsch., B: Chem. Sci., 1991, 46, 593–601.
- 4 M. Wachhold and W. S. Sheldrick, J. Solid State Chem., 1997, 134, 364–375.
- 5 P. Sekar and J. A. Ibers, unpublished results.
- 6 A. Müller, W. Jaegerman and J. H. Enemark, *Coord. Chem. Rev.*, 1982, 46, 245–280.
- 7 J. W. Kolis, Coord. Chem. Rev., 1990, 105, 195-219.
- 8 M. A. Ansari and J. A. Ibers, Coord. Chem. Rev., 1990, 100, 223–266.
- 9 L. C. Roof and J. W. Kolis, Chem. Rev., 1993, 93, 1037-1080.
- 10 M. G. Kanatzidis and S.-P. Huang, Coord. Chem. Rev., 1994, 130, 509–621.
- 11 Na₂[TeSe₃] was prepared by reaction of stoichiometric amounts of the elements in NH₃ (liq). A signal at $\delta = 437.6$ ppm in the ⁷⁷Se NMR spectrum of this compound in DMF at -40 °C compares well with that of 468 ppm obtained for [K(2,2,2-crypt)]₂[TeSe₃] in ethylenediamine.²¹ At room temperature to 5 mL of a DMF solution of 100 mg (0.24 mmol) of Na₂[TeSe₃] was slowly added 5 mL of a DMF solution of 53.5 mg (0.24 mmol) of AuCN and 0.1 mL of PEt₃. The solution was stirred for 2 h and then 100 mg of solid PPh₄Br was added. The resulting mixture was stirred for another 2 h and then filtered. The brown filtrate was layered with 10 mL of ether to produce brown crystalline blocks of [PPh₄]₂[Au₂(TeSe₂)₂] in 33% yield based on AuCN. Anal: C₄₈H₄₀Au₂-P₂Se₄Te₂: C, 35.07%, H, 2.45%. Found: C, 35.12%, H, 2.36%. ⁷⁷Se NMR (DMF): T = 50 °C, $\delta = 28$ ppm; T = 23 °C, $\delta = 25$ ppm; T = -40 °C, $\delta = 15$ ppm. UV-Vis (DMF, 25 °C): maximum ≈ 300 nm; shoulder ≈ 400 nm.
- 12 J. C. Bollinger and J. A. Ibers, Inorg. Chem., 1995, 34, 1859–1867.
- 13 N. Kuhn, G. Henkel, H. Schumann and R. Fröhlich, Z. Naturforsch., B: Chem. Sci., 1990, 45, 1010–1018.
- 14 D.-Y. Chung, S.-P. Huang, K.-W. Kim and M. G. Kanatzidis, *Inorg. Chem.*, 1995, 34, 4292–4293.
- 15 [PPh₄]₂[Au₂(TeSe₂)₂]: brown prisms, C₄₈H₄₀Au₂P₂Se₄Te₂, $M_r = 1643.71$, monoclinic, space group $P2_1/n$, a = 9.8089(5), b = 13.6406(7), c = 17.5009(1) Å, $\beta = 97.751(1)^\circ$, V = 2320.2(2) Å³, T = 153 K, Z = 2, $\rho_{calcd} = 2.353$ g cm⁻³, $\mu = 107.88$ cm⁻¹, $2\theta_{max} = 46.52^\circ$, 19346 reflections measured, 3331 independent reflections, 262

refined parameters and 0 restraints, $R_1 = 0.0295$, wR2 = 0.0855. Data were collected on a Bruker Smart 1000 CCD diffractometer with MoKa radiation ($\lambda = 0.71073$ Å). Face-indexed absorption corrections were made with the program XPREP.²² The structure was solved by direct methods with the program SHELXS and refined by full-matrix least-squares techniques with the program SHELXL in the SHELXTL-97 suite.²² CCDC 212390. See http://www.rsc.org/suppdata/cc/b3/b306415h/ for crystallographic data in .cif or other electronic format.

- 16 A. Codina, E. J. Fernández, P. G. Jones, A. Laguna, J. M. López-de-Luzuriaga, M. Monge, M. E. Olmos, J. Pérez and M. A. Rodríguez, J. Am. Chem. Soc., 2002, 124, 6781–6786.
- 17 D. E. Harwell, M. D. Mortimer, C. B. Knobler, F. A. L. Anet and M. F. Hawthorne, J. Am. Chem. Soc., 1996, 118, 2679–2685.
- 18 [PPh₄]₂[Au₂(Te₂)(Te_{2.39}Se_{0.61})]: brown blocks, C₄₈H₄₀Au₂P₂Se_{0.61}-Te_{4.39}, M_r = 1681.00, triclinic, space group $P\overline{1}$, a = 10.591(3), b= 11.161(3), c = 21.245(5) Å, α = 104.928(4)°, β = 95.396(4)°, γ = 98.466(4)°, V = 2377(1) Å³, T = 153 K, Z = 2, ρ_{calcd} = 2.349 g cm⁻³, μ = 93.77 cm⁻¹, $2\theta_{max}$ = 46.58°, 19937 reflections measured, 6844 independent reflections, 515 refined parameters and 0 restraints, R_1 = 0.0601, wR_2 = 0.1848. CCDC 212391. See http://www.rsc.org/ suppdata/cc/b3/b306415h/ for crystallographic data in .cif or other electronic format.
- 19 M. G. Kanatzidis and S.-P. Huang, *Phosphorus Sulfur Silicon Relat. Elem.*, 1992, 64, 153–160.
- 20 [PPh₄]₂[Au₂(Te₂)₂]: brown blocks, C₄₈H₄₀Au₂P₂Te₄, $M_r = 1583.07$, triclinic, space group $P\overline{1}$, a = 10.498(1), b = 10.526(1), c = 11.153(1)Å, $\alpha = 81.459(2)^{\circ}$, $\beta = 77.221(2)^{\circ}$, $\gamma = 72.994(2)^{\circ}$ V = 1144.7(2) Å³, T = 153 K, Z = 1, $\rho_{calcd} = 2.296$ g cm⁻³, $\mu = 90.01$ cm⁻¹, $2\theta_{max} = 57.50^{\circ}$, 13840 reflections measured, 5450 independent reflections, 253 refined parameters and 0 restraints, $R_1 = 0.0265$, wR2 = 0.0703. This structure determination is more precise than an earlier one of the same salt¹⁹ and of the PNP⁺ salt.²³ CCDC 212389. See http://www.rsc.org/ suppdata/cc/b3/b306415h/ for crystallographic data in .cif or other electronic format.
- 21 M. Björgvinsson and G. J. Schrobilgen, *Inorg. Chem.*, 1991, 30, 2540–2547.
- 22 G. M. Sheldrick (2000): SHELXTL DOS/Windows/NT Version 6.12. (Bruker Analytical X-Ray Instruments, Inc., Madison, WI, USA).
- 23 R. C. Haushalter, Inorg. Chim. Acta, 1985, 102, L37–L38.